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Panels and Time Series Analysis:

Markov Chains and Autoregressive Processes

by

T. W. Anderson

Stanford University

1. Introduction

In a panel survey a sample of individuals is interviewed at sev-

eral points in time; the resulting data are a sequence of responses.

The techniques and objectives were described by Lazarsfeld, Berelson,

and Gauciet in The People's Choice (19h4). That study uas based on re-

peated interviews of many voters in Erie County, Ohio, in 19h0. Re-

spondents were asked in May, June, July, August, September, and October

for which party (or candidate) the respondent intended to vote. For

some purposes the responses to this question were coded as Republican,

Democrat, and "Don't Know"; that is, each person at each time was put

into one of three categories. The records of the 45 persons who re-

snonded to all six interviews can be considered as 4 5 observations

(or "realizations") from a probabi'lity distribution of such records

(that is, a segment of a stochastic process).

A discrete-state, discrete-time Markov chain can serve as a

model for panel data. The development of this model, illustrated by

the survey of vote intention, was reported by Anderson (1954). The



statistical methodology, developed further in collaboration with Leo

Goodman, appeared later in Anderson and Goodman (1957).

In some panel surveys the responses may be quantitative, such as

answers to the question how many hours did you spend last month reading

the newspapers. In economic surveys the questions are more likely to

produce numerical answers: how many hours did you work last week and

how much money did you spend on groceries last month. Analysis of such

data are sometimes called cross-section studies by econometricians.

A possible model for time series consisting of measurements on

one or more continuous variables is a univariate or multivariate auto-

regressive process. The statistical methods for autoregressive pro-

cesses have been developed mainly for one observed time series, that

is, the record of one unit of observation. However, a characteristic

feature of panel data is that there are available the records of sev-

eral units of observation. Of course, such repeated measurements

occur in other situations. A psychologist may obtain a test score on

several individuals at several points in time; a physician may read

blood pressures of several patients daily.

The purpose of the present paper is to review some statistical

methods for Markov chains and present similar methods for correspond-

ing problems in autoregressive processes in the case of repeated

measurements. The statistical problems treated are those presented

by Anderson and Goodman (1957) and suggest that other procedures for

Markov chains have their analogs for autoregressive processes. The

development of the methods for autoregressive processes and proofs

of the mathematical statements will be given in a later paper.

2



Statistical methods for a single observed series from a Markov

chain* have been discussed extensively by Billingsley (1961). The

autoregressive process with one observation on the series is treated

in depth in Anderson (1971).

Each section of this paper is divided into three subsections,

the first dealing with the Markov chain model, the second treating

the autoregressive model, and the third displaying correspondences

between the two models. Section 2 defines the models and reviews

some of their properties. Section 3 discusses summary data and es-

timates of parameters. Section h develops tests of hypotheses.

2. Probability Models for Time Series.

2.1. A Markov Chain Model for Discrete Data. A Markov chain can serve

as a model for the probabilities of a sequence of statistical variables

that take on a finite set of values. Let the values or states or cate-

gories be labelled 1, ... , m, and let xt be the statistical varia-

ble at time t , t = 1, ... , T . For instance, xI = 2 might denote

an individual holding opinion 2 (Democrat) at the first interview

(May). Then a Markov chain model specifies the probability of state

j at time t given state i at time t -1

(2.1) Prxt xt = i} = Pj(t) i,J = 1 ... m

Bartlett (1951) developed some methods in the context of a single
observation.
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These transition probabilities satisfy the conditions p i.(t) > 0 and

M2 1p ij (t) -- i ri .,m
J=1

While the period of observation is usually finite (t=l,...,T)

the stochastic process may be defined for all integers,

? = ... , -1, 0, 1, .. in any case, there is a marginal distribution

f ,he statistical variable at each time point; the probability of

state i at time t is denoted P4 (t) [Pi(t) L 0 , ?z= pi(t) = 1]

J he Joint probability that xt_1 = i and xt = j is pi(t-l)p ij(t)

h s, the marinal probability that xt  J follows from the marginal

iiarbuti; at t - I by

P , pi (t-l) P ij~t = pjt ,..
i=l ]

ji -'ler a describe thE probabilities of the observed random variables

I T) it only necessary to prescribe the vector

1P l), ... p (1)] and the matrices P(t)= [p (t)], t=2,...,T
I ~ IT

siguishing feature cf a Markov chain is that the conditional

r y f x -, %en the entire past. x , .t 2 . . depends only

or',, , at' ~~- . di ng vacial le x I -1

* ~r~a i L1~. '~pr''~b 1 CEare- I-)moge'' u;

*' ; j:" t ) = J',* 0 ; he

,the marvi na] .ii clI tbut i..ns are homogenE(us that

.7 : . " )r¢c'.c 1: .:- iAonary. r. thl case (.') is

"-p.i p. ri' = 1

I =

ril~r 7



shows that p is a left-sided characteristic vector of P correspond-

ing to a characteristic root of 1, that is, a root of

(2.6) IP - X-1 = 0

of 1. The equations (,.2) can be written Pe = £ , where E= (. ,i)'

thus E is a right-sided characteristic vector of P corresponding

to a characteristic root of 1. There are m roots Xi = 1, X A . m

of (2.6); each root satisfies Xi < 1 . The Markov chain is called

irreducible if the root of 1 is of multiplicity 1; then there is a

positive probability of going from one state to another in some in-

terval of time. In that case p is determined uniquely by (2.5) and

the normalization p' = 1

In a more general model the probability of a state at time t

may depend on the states at several time points earlier. For example,

a second-order stationary chain is defined by the transition probabi-

lities

(2.7) Pr = k xt 2 = i , xt 1 =j = PiJk i,j,k 1, ... , ,

where Pijk . 0 and = 1i , i,j = 1, ... , m . Higher-order

chains and nonstationary chains are defined similarly. For some pur-

poses it is convenient to redefine states so as to construct a Markov

(first-order) chain that is mathematically equivalent to this second-

order chain. For example, if m = 2 , let

(2.8) t I if xt_1  i, xt = 1

= 2 if X = 1, xt = 2

=3 if xt I -2, x t =1,

- if xt 1 =2, xt =2.
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7,,7..

Then the macrix of transition probabilities for i(t) is

pill p112  0 0

0 0 PI121 P1 22

(2.9) p2l P212 o o

0 0

0P 22 1  P2 22

The Markov chain model also includes multivariate cases. As an

illustration, consider two dichotomous variables yt 1 or 2 and

zt = 1 or 2. Define xt by

(2.10) xt = 1 if Yt = i, z t .

= 2 if yt =  z'

=3 if Y ' " -

= if Yt =

The model may be further deveiol ed , ., , f'-et s of other

variables by stratification. If there is a Ai:- rt,,# c niditioning

variable, the transition probabilities can lepenfa on it; that is,

the (homogeneous) transition probabilities in the h-th stratm may

be the set [p (h)
tij

From a statistician's viewpoint the Markov chain model is con-

structed from a family of elementary multinomial distributions; in

the case of a dichotomous item (that is, two states) these are Ber-

noulli distributions. Each conditional distribution is such a



discrete distribution. The appropriate statistical procedures for

a Markov chain are similarly developments of methods for muitinomial

qistributions.

2.2. An Autoregressive Process. An autoregressive process can serve

as a model for a sequence of continuous random variables. In the sim-

plest case the (univariate) stochastic process 1yt } has the property

that the conditional distribution of yt given yt-1 Yt-,. has

expected value (t)yt_ and y - a(t)yt- is statistically

independent of y t- Yt-2' .... This is often written

(2.11) yt = 8(t)yt-1 + ut

where {u } is a sequence of unobservable independent random vari-
t

ables with means 0. If the autoregression coefficients are homoge-

nous, that is B(t) = for some , < 1 , and the ut  are

identically distributed, the process is stationary and we can write

s0

! (2.12) Yt u -s

2 . 2 2
If the ut's have variance a the Ytts have variance a2/(1-2

and covariances

t _-B
(213 ,yy 1_4 2

If the ut's are normally distributed, any set of yt's are normal

and the covariance structure (2.13) determines the process.

If Yt is a p-component vector, a Markov (first-order) vector

process is defined by

(2.14) Yt= B(t)t- +ut

.. .... .... .. ..i u I... .I1 1 iF . .. .. .... .... .... . .: .. . . .. ...



where B(t) is a pxp matrix and u t } is a sequence of independent

(unobservable) random vectors with expected values ut  0 covari-

ance matrices 4tU t = , and u independent of y Yt-2.....

Let the covariance matrix of y, be = F . Then from (2.1)

and the independence of yt-1 and ut we deduce

(2.15) Ft = B(t) Ft_ B(t)' + _t

If the observations are made for t = I, ... , T, the model may be

specified by the marginal distribution of yl and the distributions

of u2' uT . In particular, if yI and the ut's are normal,

the model for the observation period is specified by

F1' B(2), ..., B(T), E2' "' T

When the autoregression matrices are homogeneous, that is,

B(t) = B , and the ut's are identically distributed with mean 0

and covariance matrice E , the process is stationary if the charac-

teristic roots of B are less than 1 in absolute value and the pro-

cess is defined for t = ... , -1, 0, 1, ... or y is assigned the

stationary marginal distribution. In this case the covariance matrix

ofy t is

(2.16) F Z BsE B' s

S=0

and the covariance of y and y is

(2.17) Bt[5 = BtF s < t

(Note that F = F t = Ft_1  satisfies (2.15) for B(t) B and Et =E

A second-order stationary autoregressive vector process may be

defined by

8



(2.18) [t yt i Y- 2 Y-t-2 + 'ut

This model can be written as a first-order process by writing

(2.19) = B y. +ut

where

(2.20) t
Yt-I "t

(2.21) B l P2)

The characteristic roots of B are the roots of

(2.22) I-X2, + XB + B 2 = 0

For a stationary process these roots are to be less than 1 in ab-

solute value.

The autoregressive processes appropriate to several subpopula-

tions (strata) may be different. In thu homogeneous first-order case

the matrices of coefficients and the covariance matrices may be dif-

ferent. If other influencing variables are continuous, they mpy be

taken account of by adding them to the regression to yield the model.

(2.23) Yt = B t-l + ' I Ut 4-

where z is a vector of such variables and y is a vector of para-

meters. In particular, when z = 1 and y is a scalar, the process

Sfyt} may have a mean different from 0.

9
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The autoregressive process is constructed from multivariate re-

gressions. In (2.14), for example, the vector y constitutes the

"independent variables" and the vector yt constitutes the "dependent

variables" in ordinary regression. To a large extent the statistical

methods fcr autoregressive models are regression or least squares

.r ceures.

._' spondee between Markov Chains and Autoregressive Processes.

:::F-e'- vari&.ble xt  which takes the values 1, ... , m can be

r ±,e:by t.ie m-ccmrponent vector yt in which the i-th component

Sx, = i hd i 0 if x t # i . If we define s. to be the

o:-,'no. ve-tor with 1 as the i-th component and 0 as the other

,omicent5, we can define yt as c. when xt = i . Then

.) r' s = s.) E pit), i,j = 1 , m
P t t I yt- 1I ~ i .. .

Thus the conditional expectation of yt given the past is

-2rY ,::! ( 4If we I I -~ tt'< -]"

If we I , - P(t) y, then (2.25) implies 4u 0 an
t

(2.26) u't -t-s ut t- 1 , Yt-2'" )Yt-s = 0 , s = 1, .......

The latter is eqciivalenrt t, t)

Note that here u lias a singular distribution since C u = 0

C-nditional on Y = i , the variance of the J-th component c,f
Lt-1

t s pij(t)[-pij (t)] and the c.variance between the j-th and k-th

co)mponents is -pij (t)p ik(t) The uncnditional variance is

10
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if=L p.(t- ) [pi (t ) P i (t0] ,and1 t h;e inco n:itif-nal ciovarian(-e is]

"'he properties .-C a Markov. chain are simij r '.those of ar

Pautoregressive model, jel'ined by (2 ~in that tle ~ atoi

pectution of' the observed vecto r y t '7iven the- past' i ai linesar

function of the innedliately precedinc bserve Vctry h

aooo aICes ofr can be obtainedJ from i'2.-11) in. a -anner

anlcocto that of' the autoretvreF.s-i':e model. In particular, in.

neca Inr ase -7) hlj-ds with F reri aced toz 1F and, F

petlaety 4yt Y t $Y] then.

p - > p~ an, i f , . -j $- k . The

repres entation of the Markev chair difi ers tirrm the autcregressive

process in that the covariance matrix ofthe reiu -t ssnu

Ein and1 dep~ed on in the ( c-nditi-na.] dis- ribitirn; while 1

i3 'urcorreiated with . , it 1,is net. s tat t i + c al -11. ependeni-7

y We also no)te that the ahrceitcr~. re lesL

t'rian .1 in absoluIi-te vrilue Lcht -ne 0o (w 'hen I i s ire-

;,.cibi.,e) is exactly ,corresp. n rtc ! acer oi vectors .2p

*.he I eft, andj F- r. " ri-IAt jo s conrict er! 9ic v-cto-r

F'correspondingf., to iroot .2;wlogTIO the pamal eLs

between the twr.; procosses are 1I J ogs tn s ar] deri;'at n

2r o)ne mod(el fro)m the other.



3. Estimation of Parameters.

3.1. Estimation of Transition Probabilities. An observation on an

individual consists of the sequence of states for T successive time

points. For example, the T 6 successive monthly party preferences

of a voter might constitute such a sequence. Let xta be the state

of the r-th individual at the t-th time, a =1, ... , t =, ... , T

The observed sequence Xle, ..., is considered an observation

from the Markov chain specified by the set of probabilities

ip.(1)], [P (2)], ... , [pij(T)] . The probability of a given se-
ij i

auence of states x(1), ... , x(T) is

(3.1) Px(1) (I) Px(l),x(2 ) (2) ... px(T-l)x(T) (T)

The parameters to be estimated from a sample are the marginal prob-

abilities [pi(1)] and the transition probabilities

[p. (2)], ... , [pi(T)] . The observed sequences are considered as

independent observations from the model defined by (3.1).

Let n ij(t) be the number of observed individuals in state i

at time t - 1 and j at time t , and let

m m

(3.2) n it-1)= Zn .(t) (t-) i 1,...m, t 2,. .. ,T1J=l l k=in i, = ,. ,, = ,.

The set n..(t), i,j=l, ... , , for each t constitutes the fre-
1j

quencies of individuals in state i at time t - 1 and state j at

time t and would usually be recorded in a two-way table; the row

totals are n.(t-l), i=l, ... , m, and the column totals are
1

12
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A sufficient set of statistics a'or t.hc n:mel (3.1) is

n ij(t) , ij1, ... , m, t = ', ... , T ; statistic:al inferenre need

only use this information. The maximum likelihood estiirtes of the

parameters are

n.(2)
(3.3) P1) = in

NTn, .(t)
(3.4) Pi (t) 11., - , iJ = I, . , m, t = 2, .. ,T

[If n.(t-l) = 0, then n. .(t) = 0 and (3.4) is undefined.] The
i 1j

estimates are in effect estimates of multinomial probabilities. The

estimates satisfy .i(1) > 0, =i Pi) , ] ' ij.(t) > 0 , and

Now consider the case of homogeyieous transition probabilities,

but with the initial probabilities pi(1) arbitrary. Then a suffi-1i
cient set of statistics is n. (), i = ... m, and

T
(3.5) n. = I n. Q ( ) = iM'

13 t=2 1

The two-way table of frequencies (3.3) is the sum of the T - I

two-way tables with entries n (t) [However , ni(1) is not a

marginal total of this table. The maximum likelihood estimates are

3.3) and

n..

(3.6) pi = .* "

where n n"

In an alternative mode] the states at the initial time t I

are -onsidered as give;ri that is, x, a = i, ... , N , are treated

as nonstochastic. hrn n. , i = 1, . m , are considered as

1K



given, that is, are parameters, not staiisties. Thu m:ici"'i eT

-f statistics is the set n (t), t 2, T

n.', i,j = 1, ... , m as the case may be.

In the case of homogeneous transition probabiliti s, it Lwy be

desired to treat the process as s'. ati)naxy; the marginal pt.-ob cJ-  ty

distribution [pi] is determined by [pi] as the sci ,ri;T -,c o

in particular, the initial tistribution [p (1 )] must be [p.]

1
A sufficient set of statistics i-s n i ),I i =1, ... I Il,

nij, ij = I, ... , m . While the parameter set car be reduced t.

[p ij , the maximum likelihood estimates are not (3.Q6 ih this cese

because the likelihood function depends on n. (I) and1

pi) = pis i = 1, ... , m, the latter being functions of [p. ]

The estimates are too complicated to give explicitly.

To assess sampling variability and to evaluate confidence i.

inferences it is desirable to know the distributions of the estm'es.

Since the exact distributions for given sample sizes au- ooc -

plicated to be useful we consider "iarge-sample th,ory" Anders', n

anid Goodman (i957) de'eloped asymptotic theory for the num'ber cf

:A-ccrvaticns N getting large; this [are-smr e the-ry "' apr., T "iate

panel studies where the number ,f time poi!c, i- sal s, .s

a= n) and the number of resp:2ndent.,; is lar e. Whsn tI- !r a

iribaiiities are horr,- eneous, the i araneters i, t le end t.

time t except the initial probabilities [pi (1)] ; then it is

rrm,aninr 'uI tr c()ns : nr asympt. t.i- 0i-,tributi,,ns as T . Thi,

hjory is appropriate when tho data consist C ,ne f, r :vera:

I',



series; the measurements are not necessarily repeated. bartlett (1951)

gave some of this theory. In general, when a limiting distribution

hold for T - it will hold for arbitrary N ; in fact, with

proper normalization the same limiting distribution holds for 11 -0

and fixed T . In such a case we will say the limit hoids as N

and/or T - . [In mathematical terms the error is arbitrarily

small if N is sufficiently large L r T is sufficiently large, or

both.]

The asymptotic theory for N - is the usual multinomial

theory, for the N observations on the chain are independent. Then 4
by the usual multinomial theory i(1)-Pi]), i = 1, ... , m

have a limiting normal distribution with means 0 and covariance

matrix [P( I) 6 ij - Pi(2 pj(1)] where i and 6 ij= 0, i#J

If pi(t-l) > 0 , the set VnTTT [ ij(t)-Pij (t)] , j= i, ... , m

have a limiting normal distribution with means 0 and covariance

matrix [p (t)6 " (t)p (t)] ; the sets for different values
ij jk ij ik

of i and/or different values of t ar-e independent in the limiting

distribution. The limiting distribution of the estimates of the "

rows of the transition probability matrices is the same as that of

estimates of independent multinomial Jstrisitions.

If the transition probabilities ar'e ho:),'7eneoue and the chain

is irreducible, then for each i the set V?% -p )I j "i --- I m
* 'ij iJ j

has a limiting normal distribution with means 0, variances p (1-p

and covariances -pi , J # k , and the sets for different valVues

of i are independent in the limiting distribution. The limits in

15



the homogeneous case are valid as Ii - and/11:r 'I

3.2. Estimation of Autoregressive Coef7,'ients. Fe , le tYfe

p-component vector oz measurements of the a-th ixAd viama;] at tr,:: t-th

time point, a = 1, ... , Nt], ... ,T . Phe:.ed' is a !ir' -

order autoregressive mendel (2.111) with u havifdr the ncrr Ia : 1Y-

tribution N(O, t ) und y havinc the norma ii.-stributir .(

The probability density of the sequence y]. " -

aC is

(3.7) 11 1 1

2Tr)2 1 F112 R n 1
t=2

)T , y ,)
xexpt!1 F +_ I tlY B Ft

Then a sufficient set of statistics for F o .

is y t = 1, T , and =..... 12

The maximum likelihood estimates of the parameter atris are

1N
(3.8 ) 1 -- yF1 = x " '.IC

OC= 1
N f N

(3.9) B(t) "Ytot [t-l,a 1.y ,l x Yt- ,_I "I '  ' ' '

NN

(3t10 t(t) _ t-,t=

N tc

lb-

yI Y,



The components cf B(t) are least squares. e:,iimates. [lSee Anderscon

(1958), Chapter 8, and Anderson (197]), Chapter 5, for examnple.]

The assumption that the autoregression matrices a-ce h~omogeneous

and the disturbances identically distributed leado tcL corisiderablo,

simplification. The sufficient. set of s tatisf.;cs for F 1, B, and

~ s 71 -:1nd

The rnaximuri tikelihoucd estimate o.f F is (.)an-l the niaxinm

likelihood es timates -tf the other matrices are

T' N

(311 N 'C y <1

nost cas crfi~ altet *i*a "t I= **a

(3te12)e Z Bttrr pr )(Y s , ty a~ etri F i

(ate1 bu nt at CA L

11 I



We now consider the asymptotic properties of the estimates as

N - and/or T - As N is , iB(t) , and Z are consis-

tent estimates of F1 , B(t), and Ets t = 2 ... , T , respectively.

The elements of vf[B(t) - B(t)] have a limiting normal distribution

with means 0 and covariances constituting the Kronecker product

-1F' t = 2, ... , T . The matrix F is estimated consis-

tently by (1/N) =i y Y

In the case of homogeneous autoregressive coefficients, regard-

less of the distribution of yla' a i, . . , N , and of the value

of N , as T B and T are consistent estimates of B and

respectively, and - B] has a limiting normal distribution

with means 0 and covariances constituting (11N) Z F-  The

matrix F is consistent! estimated by

C[l /N(T-' ET Nt=2 ot=i Yt-l'ot Yt-l,a t

If T is fixed and N - , V(B - B) has a limiting normal

distribution with means 0 and covariances constitutin

z@T P
(3.13) z ( -

t=2

3.3. Correspondence of Sufficient Statistics and Estimates in Markov

Chains and Autoregressive Processes. 7n Section 2.- a Markov chain

was represented as a vector process with y= with conditional

probability p i(t) given yt-i = S i  From this definition we can

write the second-order moment matrices for the Markov chain as

N m; I (3.14) . n.(t) .

.... i=l

18



L .. . ..,- - - __ _ _-

which is a diagonal matrix with r (t) as tLe i-th diagonal element,

(3.15) Xn,()
1 

,a

which is an mxm matrix with n. (t) as the i ,j-th element. Note
Tj

that the elements of (3.14) car be derived 'rom the elements of (3.15).

Here (3.15) for t T ... , constitute a sufficient set of sta-

tistics for the nonhomogeneous Markov chain. The estinates (3.1)

constitute elements of the matrix estimates (3.9) under this corre-

spondence.

If the transition probabilities are homogeneous with arbitrary

initial probabilities, a sufficient set of statistics is (3.14) for

t = 1 and

T N m
(3.16) Y t-lc [rt Y nj

t=2 ao=l

The estimates (3.6) are elements of (3.11).

4. Tests of Hypotheses.

4.1. Tests Ifor Markov Chains. The tests for Markev chains presented

in this section were developed by Anderson and G]oodman (1957); they

can be applied for any value of T (> 2) and for large N . Bart-

lett (1951) developel sojme of the tests as valil Fr- one observed

sequence of states Crom a homogeneous_ chain when T o For con-

venience, we shall asunne p. (t) > 0 and P,, > J) as the case

may be. Some of the procedures were illustrated in Anlerson (195b).

Jr Section 4.2 test criteria for the corresprrnding hypotheses for

19



autoregressive models are given (in the same sequence) zid in Sec-

tion 4.3 the correspondences are discussed.

Specified Probabilities. In the homogeneous chain to test the

null hypothesis that piJ = p 0 P J m, where the set p
i J = .

are specified, for a given i one can use the criterion

* m (~. .i)2
(h(^

P.(4.1) n.

J ij
which under the null hypotbesis has a limiting x -distribution with

m - 1 degrees of freedom as N - and/or as T The criteria

for different i are asymptotically independent. To test the null

hypothesis piJ = Pill i,j = 1, ... , m, the sum of (4.1) over i can

be used; it has a limiting x 2-distribution with m(m-l) degrees of

freedom when the null hypothesis is true. If the transition probabi-

lities are not necessarily homogeneous one can test the null hypothesis

pij(t) = p (t), j 1 , m, for given i and t by use of the

criterion

mPi W - pij( .)n i ( t -l ) i j 0J~l p0 j (t)

ij

which under the null hypothesis has a limiting X -distribution as

N * . The criteria for different i and t are asymptotically

2independent; they can be summed over i and/or t to form X -

criteria for combined hypotheses. These criteria are analogs of the

2
X goodness-of-fit criterion for multinomial distributions. The

test procedures can be inverted in the usual fashion to obtain coo-

fidence regions for the transition probabilities.

i 2
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Homogeneity. In treatin, r . . a t!i lnve tgia', -r may ques-

tion whether conditi :-.I -h~r4'e e'i;:' 'nr k:-, tirr-, (A' ur.t:ervation

to require the use c;f a inu . 'lge . ,Lhain. To test 'he null hy-

pothesis that p. p ., t... ..... , , .or some pi

i ,J = 1, . .. , rt, on- m'ay use the cr'iteri.ri

t= ,mai t i-.i

Under the null hypothesis this criterion has a limiting -distribution

with m(m-i)(T-2) degrees of freedom as N - . If one thinks of

the set of probabiliT;ies p. (t) and the set of frequencies n. (t)

(three-way) mrx(T-i) arrays, the criterion ( i3) is the usual

X C-criterion for testing the independence of the categorization

(i,j) and the classification t

independence. If pij = p , = 1, ... m m, for some p.

=, ... , m, the random variablp x is independnt of x
-t

in a homogeneous Markcv chain. To ttest the null hypothesis of in-

dependence one may use the criterion

.,j=l 1 P.

whero

N(-1),..., m

Under the null hypothesis the criterion has a limiting Xcdistribution

with (m-l) 2 degrees of freedom as N - o and/or T -* , . The£

2criterion :is the X -criterion for independence in he two-way table

{ni. } . .:" "

criterion is the X 2_ rril~erion for 1need ei h w-a al



r...

Given Order. An investigator may consider a more iaborate

model in which the probability of a state observed at time t depends

on the state observed in the last r time points. He, may question

whether it would be appropriate to ue a model of lower order. In-

dependence is order r = 0 ; in the previous section this hypothesis

was tested against the alternative thao r = I . As another czait.pie,

we consider testing the null hypothesih; that, a homiogeneoas secr-nd-

order chain is first-order, that is, that p. P, for some

suitable p (p 2 -0, E PM
ik jk k=1 jk

In a second-order homogeneous chain with n.(1) and n (2)

as given [or pi(1) and p i(2) as arbitrary] the maximum like-

lihood estimates of p are
ijk

(4.6) , i,j,k = 1, .. , m
ij

AT * m n

where n E rt=3 (t) , ni = Ikm n and ni(t.) is

the number of observations of state i at t -2, j az t - 1,

and k at t Then a criterion for testing that an assumed

second-order chain is actually a first-order chai., is

Jk Jk(4.7) ni.^ '

i,j ,k=l p.

where

Ein(h~p) ^* i= in.1
PjkJ

n~i jx n,1

When the null hypothesis is true, (4.7) has a limiting X'-distribution

with m(m-l) 2 degrees of freedom as N - and/or T



Several Chains [,ientical. A popuiation may be stratifieti into

several subpopulatioNS and the transition probabiiities 'ay be dif-

ferent. Suppose we have samples from s A.arkcv c.hains with tran-

(h)
sition probabilities pi , h = i, ... , s, and we wish to test the

nul hypothesis that the chains are identical, that is, that
(h) (h)

(p) = pi h = ... , s, fcr somae p. . Iet p.. be thte max-12 i J iJ , l

imtur likelihood estimate of the transition nrobabilitv from the

1()
h-th sample, and Jet Pi. be the estimate based on alI s saml-,es

under the issmption of the null hypothesis. The criterion is

o [^,k ) ^(.) 2
S*(h) Pij -Pi

v [ n.
h=l i,A=l pij

which has the X2-distribution with (s-l)m(m-) egrees of freedom

under the null hypothesis as N + 'o and/or T - a

Independence of' Tvo Sets of States. Suppose the stato of a

Markor chain is determined by a pair of responses (that is, answers

to two questions). Denote the state as (a,'3=, a .. , A, and

3 1, ... , B, where a denotes the first answer or class and S

the second, and the transition probabilities as p *f ,Jv is the

sequence of changes in one classification independent of that in the

.e.nd? She null. hyrothesis is

( . 0 r., = q r{ ' o, = i, . . ,P , . .

where q is a transition probability for the first classification

and r is for the s,-2cond. Let n C (t) be the number of indi-

*viduals in s~ate ((1., 3) at , - 1 an't (ij ,v) al t , and let

-- MA



=2 n 8  (t) The maxii:um Likel7hcd estimate of p

is

(4.11) , A B , , I,...,A, f3,y=l .. ,A=l ' =i 7 cHn ,y6

when the null hypothesis is not assumed and is q , where

B A
' 4.a12, '  a=l na3p1

4.12 ) q zA .-B 3 v B

when the null hypothesis is assumed. The X 2-critericn for testing

the null hypothesis cf independence is

A B faPv- iu V)2

cA,1j=l 3,\=l vi B rv

where n EA zB n When the null hypothesis is true,
U3 y=l U~i ~3,Y5

the criterion has a limiting X 2-distribution with

AB, (AB-1) -A(A-) -B(P-i) (A-1)(B-1) (AB+A+B) degrees of freedom

a N and/or T -

..2. Tests for Autoregressive Processes. The development and appli-

cation of procedures is based on a-ymptotic theory as N - and or

T - In this section we study Meth Is of testing hypotheses

al ,:,ut the matrices (A' autorecresslve c,, -ffi riert,s and, in some cses,

hypntheses about cov-Liance rratricei. Thfe ynctheses -rrespond tc,

those concerning Mark:v chains pre'entei in 'ertion 4.1. The prcce-

duceL are analogs of' procedures in multivari te regression. [Lee

Arderson (1958), Chav.ter 8, for exwmriple.] For many hypotheses " -

2'4
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whrerl tre nul 1 hypcth(- s i.: true.

TndepE~nlence. In: the 114 rst-rdtcr autcrer'ressive m'>del inuepen-

-ertce at ,it~erent time poiint.s is identica~t ()=. 01

V ~.rl /,er it; the e. rncgeneouis case B =0 in the

ut1-r a Fe the n~uil 'hypoth(?sis 4f irieperndenee ile that, the autcre-

<riunmatrix is It 7ero T>atix and the crite-i n iS (4 .14) with

3 that is,

T N

t=2 a=l

'liven Order. "'he second-order homogenecu-s process isdefined by,

(2.19). It lZea first-order process iC B2 = 0. To test this null

hyro-hesis we need es-timpates of B and B

T NT 141

=3a1 3 _x y 1,~

TN 1

1 Y y

su 5- n ax imur L: fl(2 i -( estinates3 if' y , A ,..N

12cCrnsi c cf i ~ covariarice ma, !' x ae1>

A e~i~'~i'.n' )!te.' rng !Aie ril] I Ttei



Under the nu 'JhpKAs cri*,erl-

with p egroeer- ed (±s as .

,everaJ I'ces. dent leal. Cons i Je i QJl hyp thesis

'h*. the majri-es fatrrssv eiielr -ir

i umurenesu -),Li ss wv rICSE .it!, ~ ~ ra~ :alarices

ar--eu. ntne basis -i' N, -s (,I;, .c'scriee(h

Ircm the h-Ih process, ,, h f LF estt) _t

o'f the r.matrix for th,< h-t.h TurucesE i ir, the -e sni~ f the

hyp'tbeticialily equal rtrifri ces, arid U erc - A .imate ,f

c riiteri 'xr for test in !, he nu~ 11 hypA I e is

h=1 t= C,1 1._16t10

!Yt=2c= -i CI y t 2,
U!nder the null hypoth(-sis thf tas aXdsrbton wit h (s - 1

dt">,rees of' freedoin.



Independence of Two Subprocesses. Suppose [Yt = ( )

and we ask the question whether the first-order autoregressive process

(1) (2)
is such that the two subprocesses {y )} and fyt  } are indepen-

dent. Let

132 1) 
2 2

The two subprocesses (in the Gaussian case) are independent if and

only if

( .22) B12 = 0, B 21 :- 0

(4.23) E I5 =
"12 =  2l z 0-

The estimates (3.11) and (3.12) are partitioned similarly. A test of

the hypothesis (4.23) can be based on the criterion

(4.24) N(T-1) tr il1 12 -22 21

2
which has a limiting X -distribution with plP2 degrees of freedom,

(as rI ! and/or T ) , where p is the numoer of coordinates

0I)
in y ) an d To2  is the number in y 2

When E = 2 = 0 a criterion to test the null hypothesis

I2 =0 is

I.



( >) tr B1F L~ Y'' -- Y ,

lrr 2 1 as ' a ll; /x >1 --- 2 1 _

Th':thr ee cri fsr - r Ef .asymto~ c a r( -i :,er

3. (;srr(.s nrdence i ?± t Tht,.- mix na m' ',m-

),e sc i fy b e 2aus e th te su af e ensr i,- i n o hi rs o-, whi eC

r:atri x P has p' .In rmt c asc s, i f a x-es' r: r a hyprxth'1

/1 b0114  I )' !;ta,-- a:; the rs L'lIcr r" o ~ 'e s <f ~r~w.sarw

al ecrre- pnri, o:' the ?' i7, r. -i *~ r x

tuince n, (t. I ) is 1,h- i-th 1'i'.u r:i;,il~

y y 91~~~I the reprelseC t t :V 1Mt ein

P)and ( . 1 ) r srcs:;p(, rid a tezs LI C horn e 1"."t~



c'-r independence (4 4) and (4 .16) ocr-s nd ;I ri the d i scm r,

-'i.- he covariance matrix of Pij oes not depend on

.i,r,-espindence between degrees of fretiom, however, is (n - 1) and

tec'ause independence in the discrete case is not de.ined by

S.i. ng , = 0 (Independence is P =i p

For testing whether a second-order model is actually firrit- rder

t.ria (4.7) and (4i.19) correspond. In the latter,. could .-

rplOtced by (3.12), which is a consistent estimate of F when the

.1 hypothesis is true, or X could be renlaced by the matrix in

-"m-ets divided by N(T - 2) . Note the degrees of freedom are

and p , respectively.

test equality of matrices criteria (4.9) and (4.20) corres-

1i. The tests of independence, however, do not have similar otruc-

" , w-e1g,ents. The author is indebted to Persi Diaconis, K;ei lenry,

t, ul Shanan for reading earlier versions of this paqer and rakirn'

: 30suest ions.
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